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® Overview of tidal creek and marsh morphology

® Hydrodynamics of tidal currents and their disto :
T S result of non- Iinearfrictional processe

~ ® Recent research of Tt
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Salt marshes worldwide share common
morphological features
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Nature of distorted tidal cu
influenced by morpholc
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Tritium (HTO): Example of tidal ret
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Flushing of intertidal areas
(from Sanford et al, 1992)
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Mixing of effluent in main channel before returning to intertidal
area on flood phase.




Groves Creek Study
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Morphology: shallow channels
surrounded by wide intertidal areas)




Water coverage changes quickly as tide
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Groves Creek tracer experiment







Dye concentration over

Dye concentrations in Groves Creek (GRV2)
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Dye concentrations (Low-range view)

Dye conccentration (ug/l)
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Fluorometer data were fit to an exponent
function that yields initial concentration (
flushing rate (A ) of tracer

Station 2 (2 phase) Exponential Fits
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Dye retention summar
Phase |

Station # | C_ (ug/l) | A (ugid)| T,(d) R2

I 12 -0.96 1.0 0.99
e~ 2 45 -1.36 0.7
6 72 -1.20 0.8
8 39 | -135 0.7
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Flushing rates (\) compared to other
marshes

t > 3'('/;) {
Abercorn

Creek

Patch scale (axial
dimension relative to
tidal excursion)

Groves Creek (SklO) Instantaneous <100 pg/l -1.3 > -0.8ug/lid 0.98 > 0.86
-> to large tidal River release (scale <<1) 1A =1d
Abercorn Creek Cloud passed creek for 32,000 pCi/l -0.2->-0.1 pCi/l/d 0.92 >-0.89
- - to Savannah River ~6 days (scale >>1) 1A =7d
| SSC Dock Cloud in area for ~ 1 3,000 pCi/l  -0.02->--0.01 pCi/l/d  0.75 >0.87
;.; - to ICW month (scale >>1) 1A =70d
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Speculative interpretation of Phases | & 2

Phase 2 begins after ~3 tidal cycles L
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Summary

» Removal of point-source tracer from the inte
occured in 2 phases:

- phase 1: ~3 tidal cycles after the initial pulse
reached each station; marsh flushing rate

- phase 2 marsh flushing ra
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Channel velocity averaged over many
tidal cycles indicates a circulation regime
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Mean (m/s) 0.02 0.01 ~0.00 0.06 -0.01 -0.03
STD(m/s) 0.38 0.36 0.22 0.24 0.25 0.22

Low-frequency water-level
fluctuations alter hydrodynamics

North Duplin River (Aug 2003)
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Two types of tidal creek

Type |: continuously connects
to ocean or river (axial flux)

Type 2: periodically dries during
tidal cycle (probably dominated
by lateral flux)

Neap-spring cycle can change

FLoop the boundary significantly!

SEDIMENT FLUXES [tons/tidal cycle]

Mariotti, G.and S. Fagherazzi (201 1) Asymmetric fluxes of water and sediments in a mesotidal mudflat channel.
Continental Shelf Research 31:23-36.

Subterranean circulation system (SCS) is an
important component of material transport
from tidal marsh to feeder creeks***.

® represents the 3-D recirculation of tidal-creek water through
marsh sediments

® tidally-induced pressure gradients drive a continuous
transport system

® incorporates the result of many interactions across the
sediment-water interface

® interacts with morphology of the intertidal-area, such as the
distribution of non-cohesive and cohesive sediments

® Structure and distribution of macro-pores formed by plant
roots and animal burrows

* %
Only SCS explains the presence of certain Radium isotopes in tidal creeks
(Moore et al., 2006; Beier et al., 2009)




What is importance and streng
subterranean circulation?

Phase 2 begins after ~3 tidal cycles




Questions to guide future

circulation patterns in the s
~intertidal creeks and mars
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Why is this asymmetry i in
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Dye concentraion (ppb)

Decay of dye cl

Station 2 dye decay (Phase 1)
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Data (smoothed)
Prediction

[dye] = 4.29T7 065
R2=0.95




