Water Dynamics in the Freshwater Forested Zone of Tidal Creeks

Brooke J. Czwartacki^{1,2}, Carl C. Trettin², Timothy J. Callahan¹

¹Graduate Program in Environmental Studies, College of Charleston ²Center for Forested Wetlands Research, US Forest Service

COLLEGE of CHARLESTON

GRADUATE PROGRAM IN ENVIRONMENTAL STUDIES

Tidal Freshwater Ecosystems

Broad Extent

- 200,000 ha tidal freshwater marsh & forest in the Southeast US
- 40,000 ha in SC

- Habitat and terrestrial output
 - Waterfowl and migratory birds
 - Mixing zone : water, nutrients, sediments transported to estuary

Heterogeneous systems

- River discharge, geomorphology, climate, and tide stage
- Hummock and hollow topography
 - hydrologic microsites
- Tides = alternating wet & dry
 - high productivity, nutrient turnover

Vulnerability

- Rising sea level
 - 3-4 mm/yr along the SC coast
 - Vegetation shifts and tree mortality
 - Sediment accretion (1.3-2.2 mm/yr) not keeping pace with sea level rise
- Coastal Development
 - Altered hydrology
- Inconsistent mapping and terminology
 - Upper boundary obscured by forest cover
 - Lack of a streamlined classification system
 - Reliance on dated/incomplete datasets

freshwater forest → oligohaline marsh

Need for Study

- Hydrologic dynamics are poorly understood in tidal freshwater forests especially near the tidal/non-tidal convergence zone
 - Shift from tidal to fluvial dominated hydrodynamics
- Few studies exist on small headwater tidal systems connected to mesotidal estuaries
- There is uncertainty related to how non-tidal bottomland hardwood stands will respond to persistent freshwater tides from sea level rise

Methodology

- Hydrologic Infrastructure
 - In-channel stream gages
 - stilling wells and water level loggers
 - Water table well transects in riparian zone
 - Automatic water level loggers and manual wells

- 0.1 ha plots
 - Overstory (DBH)
 - Understory (% cover)
- Flooding tolerance & Wetland
 Indicator Status

Surface water and tides

Tide Range = 1.28 m

- Semi diurnal, ocean driven tides
- 12.5 hour cycle,4.5 hours behind coast

Tidal Riparian Zone

LT-1 – tidally dominated

- dynamic shortterm, stable longterm
- muted climate response
- follows sea level

MT-1 & UT-1 – mixed tidal and fluvial

- Variable on long term
- Increased response to rainfall and ET

Water table tidal forcing

Vegetative Communities

- Insensitive to hydrologic regime
 - Bottomland hardwood community
 - ironwood, laurel oak, sweetgum, green ash, elm, swamp chestnut oak
 - switch cane and dwarf palmetto
 - poison ivy, sedges, grasses
- Tidal reach did <u>not</u> possess more
 - "Most" or "Moderately" flood tolerant trees

or

"OBL" or "FACW" wetland indicator species

Hydrologic Gradient

Summary

- Direct relationship between tidal creek and riparian zone hydroperiod
 - Tidal forcing in water table a function of mean surface water stage and residence time
 - Middle tidal transect is a "critical zone" = shift from tidal to fluvial hydrodynamics
- Predominant "upstream" water table gradient
 - Huger Creek functions a freshwater reservoir
- Vegetative community response = scale dependent
 - Broad ecological amplitude of bottomland hardwood forest type,
 nuances in soil texture, differences in water demand from plants, past
 land use and disturbance

Future Research Needs

- Develop Huger Creek into a tidal freshwater forest reference site
 - Site in "good" condition
- Intensify and enlarge vegetation plots and include the marsh/forest transition zone
 - Primary production and leaf area index measurements
 - Marsh sites to include salinity gradient
 (fresh → oligohaline → mesohaline) to evaluate sea level rise impacts
- Water budget for Huger Creek
 - Additional riparian wells in opposite floodplain, piezometers, velocity measurements, rain gages, sap flow measurements
- Mapping the current extent of tidal freshwater forested wetlands
 - Use LiDAR data to refine estimates of tidal freshwater wetlands

Acknowledgements

- Project Funding: Graduate Program in Environmental Studies, The Graduate School of the College of Charleston, and the US Forest Service: Center for Forested Wetlands Research for project funding
- Bo Song, Tom Williams, Julie Arnold, Artheera Bayles, Andy Harrison, Frank Powers, Michael Griffin, Anne Beckley for their valuable assistance with analyses, field work, and data preparation

