

NC STATE UNIVERSITY

What water quality benefits does a constructed brackish marsh provide when receiving nutrients from agricultural drainage waters?

Randall Etheridge, Mike Burchell, François Birgand

Problems in Coastal Areas

Loss of marshes

Eutrophication

A Potential Solution

///// Closed to shellfishing

Phase II restoration 110 acres (45 ha) Wetland references

Project Goals

- Demonstrate non-traditional design techniques for restoring wetlands to an agricultural landscape
- " Create a stable tidal creek and marsh ecosystem that integrated into surrounding marsh
- "Reduce exports of agricultural pollutants to the North River estuary
- " Conduct research studies to evaluate stability of the design and other ecosystem services provided (specifically NO₃-N retention)

Water Movement in the Marsh

Flow dynamics

Flow Monitoring

- Doppler velocity meter records velocity and water depth in flume
- Velocity and water depth recorded every 15 minutes
- Use manual stream gauging to relate Doppler velocity to actual flow in the flume

Doppler velocity meter

Nutrient Monitoring

Parameter	R ²	RMSEP (mg L ⁻¹)
NO ₃ -N	0.998	0.1
TKN	0.91	0.3
DOC	0.94	1
TSS	0.92	7
PO ₄ -P	0.66	0.01
ТР	0.73	0.02
Salinity	0.97	2

Mass Balance

$$M = k \sum_{i=1}^{i=t} q_i c_i \Delta t$$

- M = total mass of N either exported or imported (kg)
- t = time (min)
- " k = constant for converting units
- q_i = water flow at time i (m³ s⁻¹)
 - c_i = concentration at time i (mg L⁻¹)

Positive Mass Balance = Retention Negative Mass Balance = Release

Upstream Station:

Single storm event example

Upstream Station

Downstream Station

Long-term results

TSS dynamics

Water balance intrigue...

2-way water pump!

TKN balance: net export

DOC balance: net export

Nitrate Mass Balance

Mass Balance Summary

Parameter	Input Mass (kg)	Output Mass (kg)	Mass Balance (kg)	Percent Retention
NO ₃ -N	470	430	40	9%
TKN	1,290	1,410	-120	-9%
TN	1,760	1,840	-80	-5%
DOC	18,000	19,400	-1,400	-8%
PO ₄ -P	57	59	-2	-4%
ТР	117	125	-8	-7%
TSS	48,000	51,000	-3,000	-6%

Conclusion

- Long-term 15-min data: essential to make meaningful conclusions
- "Nitrate retention values mid-way between stream and non-tidal wetlands
- "Marsh: 2-way water pump, 1-way nutrient pump
- "Nutrient outwelling confirmed?

Questions?

Marsh Creation Goals

- Create lost habitat
- Improve water quality in the North River
- Provide design guidance for future salt marsh projects in coastal North Carolina

September 2007

November 2012

DOC

Water Balance

Water Balance

Water Balance

DOC

Conclusions

- Marsh retained 9% of the nitrate that entered and exported all other monitored parameters
- Groundwater flow driving fluxes of DOC and other nutrients
- " Low residence time reduces retention when compared to treatment wetlands
- "Residence time is higher than upland stream with uni-directional flow potentially providing more retention

