A new stormwater treatment technique-regenerative stormwater conveyances

Kevin Nunnery knunnery@biohabitats.com

Adrienne Cizek arcizek@ncsu.edu

Ecological Restoration:

...the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed. (Society for Ecological Restoration)

Ecological Engineering:

...integrating ecology and engineering... design and construction of sustainable ecosystems... to integrate society with the natural environment for the benefit of both. (Howard Odum)

Novel Ecosystem:

...ecosystem that has been heavily influenced by humans but is not under human management.

Nature (2009) 460: 450-453

Regenerative Stormwater Conveyances (RSCs)

-----Utilize a series of shallow aquatic pools, riffle/grade controls, native vegetation, and an underlying sand/wood chip substrate (ecological restoration and ecological engineering)

-----intercept stormwater, and filter pollutants from the flow of stormwater in channels that are often degraded by urban runoff (novel ecosystems).

Groundwater Restoration

Preliminary RSC Monitoring Data — Emerging Trends/Benefits:

- •Reduction of peak discharge and extension of the time of concentration of stormwater flows
- Reduction of nitrogen loads
- Reduction of phosphorus loads
- Reduction of TSS loads
- Reduction in stream temperature
- Extension of downstream baseflow periods

There is a somewhat analogous / reference system --- beaver dams

Tributary to Rock Creek Washington, DC

February 2011

~10 ft Incised

Hydrographs during individual storms WILELINOR

Source: Solange Filoso, University of Maryland

Carriage Hills

Carriage Hills,
Source: Solange Filoso, University of Maryland Center for Environmental Science,
Chesapeake Biological Laboratory

Reconnect Stream - PB-1

Raising groundwater elevation to near top of bank would store
8.5 ac-ft of water

Estimated to extend baseflow by 19 days

Significant benefits to Stream hydrograph, shear s, instreamhabitat, adjacent wetland hydrology, etc.

른글 // 본글 //

STORMWATE WASTELOAD ALLO IMPERVIOUS ACRES

GUIDANCE FOR NATIONAL POLLUTANT DISCHARGE ELIMINAT STORMWATER PERMITS

JUNE (DRAFT) 2011

1800 Washington Boulevard | Baltimore, MD 21230-1718 | www.mde 410-537-3000 | 800-633-6101 | TTY Users: 800-735-2258

MARTIN O'MALLEY, GOVERNOR

ANTHONY G. BROWN, LT. GOVERNOR | ROBERT M.

Table 4. Structural BMP Retrofit Matrix

BMP Practice	TN	TP	TSS
CBP Structural BMPs			
Dry Detention Ponds	5%	10%	10%
Hydrodynamic Structures	5%	10%	10%
Dry Extended Detention Ponds	20%	20%	60%
Wet Ponds and Wetlands	20%	45%	60%
Infiltration Practices	80%	85%	95%
Filtering Practices	40%	60%	80%
Vegetated Open Channels	45%	45%	70%
Erosion and Sediment Control	25%	40%	40%
Stormwater Management by Era			
Development Between 1985 - 2002	17%	30%	40%
Urban BMP Retrofit	25%	35%	65%
Development Between 2002 and 2010	30%	40%	80%
Development After 2010	50%	60%	90%
ESD to the MEP from the Manual			
Green Roofs	50%	60%	90%
Permeable Pavements	50%	60%	90%
Reinforced Turf	50%	60%	90%
Disconnection of Rooftop Runoff	50%	60%	90%
Disconnection of Non-Rooftop Runoff	50%	60%	90%
Sheetflow to Conservation Areas	50%	60%	90%
Rainwater Harvesting	50%	60%	90%
Submerged Gravel Wetlands	50%	60%	90%
Landscape Infiltration	50%	60%	90%
Infiltration Berms	50%	60%	90%
Dry Wells	50%	60%	90%
Micro-Bioretention	50%	60%	90%
Rain Gardens	50%	60%	90%
Grass, Wet, or Bio-Swale	50%	60%	90%
Enhanced Filters	50%	60%	90%
Additional Structural BMP Guidance			
Redevelopment (MDE)	50%	60%	90%
Existing Roadway Disconnect (MDE)	50%	60%	90%
Step Pool Storm Conveyance (MDE)	50%	60%	90%

NC STATE UNIVERSITY

Brunswick County BFC Hydraulic Performance

Adrienne Cizek

December 2013

www.bae.ncsu.edu/stormwater

Brunswick County, NC

- ➤ Severely eroded "ditch"
- Entering Lockwood
 Folly stream/wetland
 complex
- ► Goal: Hydraulically manage stormwater runoff

Watershed Characteristics

- Coastal Plain in Brunswick Co, NC
 - HSG A
- ► 12 ac mostly pervious land uses
 - Also treats runoff from Hwy 17
- Retrofit eroding swale into Lockwood Folly

Biofiltration Conveyance Retrofit (BFC)

Storm Stats

- ► Monitoring Period 1/13 to 8/13
 - 20 inflow producing rainfall events
 - ► Max Rainfall Depth = 1.5 in
 - ► Max Inflow Volume = 2683 cf
 - \triangleright Max Peak Flow = 1.3 cfs
 - 1 produced surface outflow
 - ► Max Outflow Volume = 44 cf
 - \triangleright Max Outflow Rate = 0.04 cfs

Outflow Producing Event 6-7-13

Stage in Pools: 6-6-13

Overall Water Balance

Next Steps...

- Discretite subsurface flows
 - Groundwater
 - Seepage from pool to pool

► Data collection through Spring 2014

