DEVELOPING NUMERIC NUTRIENT CRITERIA FOR SOUTHWEST FLORIDA TIDAL CREEKS

PART 2: CREEK SELECTION AND SAMPLING DESIGN

Mike Wessel, Jay Leverone Anthony Janicki, Kellie Dixon, Ed Sherwood, Judy Ott

> Southeast Tidal Creeks Summit Wilmington, NC, December 16 – 17, 2013

PRESENTATION OVERVIEW

Provide details on creek selection and study design for sampling effort

- Briefly summarize first three project tasks:
 - Project goals
 - Conceptual models
 - Data compilation

GOALS

- This project aims to develop management level water quality targets and thresholds (standards) for tidal creeks. That is, science based management, not strictly a research project
- The proposed standards will likely be expressed as some statistic representative of an annual expectation (e.g., annual geometric average or threshold exceedance value)
- Compliance assessment framework should include allowances for natural variability and uncertainty

CONCEPTUAL MODELS

Watershed Management

RESPONSE ENDPOINTS

Response endpoints are:

- Fish abundance, distribution, community structure
- Water column chlorophyll
- Benthic algal chlorophyll content
- Dissolved oxygen

COMPILATION OF EXISTING DATA

	Tampa	Sarasota	Charlotte
	Bay	Bay	Harbor
Hydrography Data			
USGS NHD Hydrography	1	1	-
Tidal Extent	1	1	1
USGS Stream Flow Gages	V	× -	× -
NWS Rainfall gages	1	×	×
Watershed Data			
NEP Watershed and Basin Boundaries	×	×	1
USGS Topography	~	×	×
Water Management District Land Use Land Cover	1	1	1
Water Management District Mangrove/Salt Marsh Cover	~	*	~
Modified Shorelines	- V -	× -	V -
Structures	¥ -	× -	¥ -
Water Quality Data		-	
Ambient Creek Water Quality Data	× -	× -	1
Ambient Tidal River and Bay Water Quality Data	1	~	~
Previous Tidal Creek Studies	¥ -	× -	×
NEP Nutrient Loadings Information	×	×	1
Biological Data			
FWC FIM Estuary Data		×	~
FWC Tidal Tributaries Data	1 -		1 -
Previous Tidal Creek Studies	¥ -	¥ -	¥ -
FDEP Charlotte Harbor Tidal Creek			4
Macroinvertebrates			Ψ.
Sarasota Tidal Creek Index	i.i.	~	1

TASKS COMPLETED

- Identified our population of tidal creeks (N=306)
- Adopted our conceptual models
- Compiled existing information
- Recognized the need for a classification scheme in order to select a subset for additional sampling (n=16)

CLASSIFICATION

Why Classify Creeks:

Tidal Creeks in SW Florida range from relatively "natural" systems to mosquito ditches and urban stormwater conveyances.

CREEK CLASSIFICATION METRICS

- Landscape Development Index scores
- Nutrient Loading Estimates
 - = TN
 - TP
 - H₂O
- Unit Area Loads
- Hydrologic Soils Group
- Elevation
- Distance to Nearest Pass
- Note: Did not use WQ concentration data

LDI: WITHIN HUC BASINS

HIERARCHICAL CLUSTERING

Data Matrix			Cree CC0 CC0	ek I 1 2	LDI 2.71 4.49	HSG A 0.00 0.13	Slope 0.03 0.06	UAL 6 0.0	. PN 6963 7463	1ean 2.72 2.72
Standardize		•				x –	- μ			
		CC01	CC01 (CC02	CC03	CC04	CC05 C	C06 C	C07 C	C08
		0001								
Similarity		CC02	83							
		CC03	75	75						
	r	CC04	61	75	10	0				
S _{ii} = <u>P+N</u>		CC05	75	75	10	0 100				
°т		CC06	58	58	8	3 83	83			
$D = \pm$ for both		CC07	41	58	8	3 83	75	100		
		CC08	58	58	8	3 83	61	100	100	
N = - for both		CC09	58	58	8	3 83	83	100	100	100
T = Total #		CC10	67	67	9	2 92	92	75	75	75
		CC100	50	67	7	5 75	75	58	58	58
					-					

RESULTS OF CLASSIFICATION

CLASS DESCRIPTION

- Class A creeks were the longest creeks with the highest nutrient loadings
- Class B creeks had the highest proportion of A soils and the highest LDI scores
- Class C creeks had the lowest LDI scores and the highest proportion of B soils
- Class D creeks had the lowest soil P concentrations and were closer to passes

DISTRIBUTION OF CREEK CLASSES

FINAL SELECTION (16 CREEKS)

- Final selection based on:
- Four creeks in each class
- Random selection within class
- Collective knowledge
- Reconnaissance
- Logistics

SAMPLING DESIGN

SAMPLING DESIGN

- Based on feedback from Joint NEP Working Group:
- Sampling effort will be balanced across creek classes
- Sampling effort will be balanced across strata within a creek
- Each creek will include a WQ sampling location above the expected tidal head to capture contributing freshwater source

OUR DESIGN IS

OBSERVATIONAL

LONGITUDINAL

HIERARCHICAL

ECOLOGICAL RESPONSE

Ecological Response

Nutrients

Relationship between nutrient delivery, assimilation and export may vary due to physical habitat alteration, landscape development, etc.

